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Photonic band structure calculations using scattering matrices
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We consider band structure calculations of two-dimensional photonic crystals treated as stacks of one-
dimensional gratings. The gratings are characterized by their plane wave scattering matrices, the calculation of
which is well established. These matrices are then used in combination with Bloch’s theorem to determine the
band structure of a photonic crystal from the solution of an eigenvalue problem. Computationally beneficial
simplifications of the eigenproblem for symmetric lattices are derived, the structure of eigenvalue spectrum is
classified, and, at long wavelengths, simple expressions for the positions of the band gaps are deduced. Closed
form expressions for the reflection and transmission scattering matrices of finite stacks of gratings are estab-
lished. A new, fundamental quantity, the reflection scattering matrix, in the limit in which the stack fills a half
space, is derived and is used to deduce the effective dielectric constant of the crystal in the long wavelength
limit.
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I. INTRODUCTION

Photonic crystals are structures in which the refract
index varies periodically with position. Their unprecedent
ability to steer the propagation of light makes them prom
nent candidates to be the technology underpinning no
classes of photonic devices. An important tool in the mod
ing of photonic crystals is the band structure, which indica
how the propagation of light depends on frequency, polar
tion, and direction. For some photonic crystals, all travel
wave solutions are forbidden for a particular frequency int
val, which is then referred to as a~complete! band gap. There
exists a mature literature on the calculation of photonic b
structures@1#, with various approaches such as plane wa
methods@2,3#, transfer matrix method@4,5#, finite difference
time domain method@6#, layer Korringa-Kohn-Rostoke
method@7# and multipole methods@8,9#. Here, we introduce
a generic method for calculating the band structure of tw
dimensional photonic crystals, based upon the observa
that such crystals can be considered as a stack of iden
one-dimensional layers, each of which is a periodic diffra
tion grating. The scattering matrices of the gratings are u
in combination with Bloch’s theorem to determine the ba
structure of the crystal in a way first developed by McR
@10# for electron diffraction, and applied recently to the ph
tonic crystal problem@7,11# In this way, band structure cal
culations can use any technique from the substantial lit
ture on scattering by diffraction gratings@12,13#.

There are a number of features in the treatment prese
here that generalize the earlier work@10,11#. We take advan-
tage of the symmetry that is present in rectangular, cente
rectangular, and hexagonal crystals@14# to develop the ei-
genvalue problem in a form improved in both computatio
stability and efficiency. In fact, starting from a plane chara
terized by the Miller indices@h1h2#, the method can be use
to generate the band structure in the@h1h2# direction in the
Brillouin zone, though here we only apply this to the usu
high-symmetry directions.
1063-651X/2001/64~4!/046603~18!/$20.00 64 0466
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We study not only propagating modes, but also the e
nescent states. We also deduce the reflection and trans
sion matrices corresponding to a finite stack of gratings,
construct the limit of the reflection matrix to deduceR` , the
reflection matrix of a semi-infinite space composed
stacked gratings. It is shown that this is a useful tool
studies of homogenization, i.e., the replacement of the c
tal by an equivalent homogeneous dielectric. Finally, we d
cuss the occurrence of band gaps at long wavelengths,
senting a simple criterion for the onset of a band gap, a
comment on the behavior of the photonic crystal near
edges of band gaps.

We formulate the method for the most general tw
dimensional Bravais lattice, and give examples for the hi
symmetry square and hexagonal lattices. Part of the for
lation is an investigation of the pairing properties of t
Bloch factors. Though the reflection and transmission ma
ces can be obtained in a variety of ways, here we use
multipole method for cylinder gratings described earlier
us @15,16#. Since multipole methods rely on the knowledg
of lattice sums, our approach, in which we consider a tw
dimensional structure to be built up from one-dimensio
gratings, leads to relations between lattice sums of one-
two-dimensional lattices.

II. THE EIGENVALUE PROBLEM

A. Nomenclature

We consider an infinite periodic structure comprisi
identical layers, each of which is a one-dimensional diffra
tion grating, consisting of regular cylindrical inclusions
infinite extent in thez direction, in an otherwise uniform
background medium. The basis vectors of the lattice aree1
5d1(1,0) and e25d2(cosc,sinc), with a general lattice
vector being

lmn5me11ne2 . ~1!
©2001 The American Physical Society03-1
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For convenience, we introduce some additional nomen
ture: dx5d1 denoting the period in thex-direction, dy
5d2 sinc denoting the vertical displacement of success
gratings in the lattice, andsx5d2 cosc denoting the latera
shift of one grating relative to the next. For a square latt
we haved15d25d and c5p/2, so thatdx5dy5d and sx
50, while for a hexagonally closed packed latticedx

5d, dy5dA3/2 andsx5d/2 ~i.e., d15d25d andc5p/6).
A schematic diagram for a general array is shown in Fig

We begin with a single grating, corresponding to o
layer of this lattice. A plane wave of angular frequencyv
and unit amplitude, is incident onto the grating with wa
vector (a0 ,2x0) perpendicular to the axes of the cylinder
and wave numberk5v/c5(a0

21x0
2)1/2, where c is the

speed of light in vacuum. The grating generates various
flected and transmitted orders~channels! p that may be
propagating or evanescent. The direction sines and cosin
the associated plane wave fields are given by

sinup5ap /k, ap52pp/dx1a0 , ~2!

cosup5xp /k, xp5Ak22ap
2, ~3!

with the xp being real for propagating orders and positi
imaginary for evanescent orders.

For each grating, and for each possible incidence chan
we now introduce vectors of amplitude reflection and tra
mission coefficients that constitute the columns of the refl
tion and transmissionscattering matricesthat characterize
the diffraction properties of the structure. In the case of
theory for a cylinder grating@15#, the phase origin of ampli-
tudes is taken to lie on a line through the centers of
cylinders. In general, four scattering matrices are required
R(0) and T(0) representing reflection and transmission sc
tering corresponding to incidence from above~i.e., from y
.0 in Fig. 1!, andR8(0) andT8(0) being the corresponding
quantities for incidence from below the grating~i.e., from
y,0). The (p1 ,p2) element of matrixT(0), for example,
represents the transmitted amplitude in channelp1 corre-
sponding to unit incidence amplitude from above in chan

FIG. 1. Geometry of the unit cell~defined by the fundamenta
translation vectorse1 and e2) for the Bloch method calculations
The phase originsP1 and P2 of the fields respectively abov
(f 1

1 , f 1
2) and below (f 2

1 , f 2
2) the grating are shown.
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p2. The matrices defined in this way, of course, depend
the incidence angle and frequency through the quantitiek
anda0.

In the present paper we assume that the matr
R(0), T(0), R8(0), andT8(0) are known from the outset fo
all gratings. These matrices are of infinite dimension a
must be truncated for computational purposes, keeping
ficient plane wave orders to ensure that the solution is w
characterized and stable. For the cylinder gratings that
consider here, this can be done using multipole methods
cussed earlier@15,16#. However, scattering matrices for thes
and other grating structures may be generated using inte
equation techniques, differential methods as well as mo
methods. Indeed, for ay-symmetric structure such as th
simple cylinder grating we haveR(0)5R8(0) and T(0)

5T8(0). Nevertheless, while the theory developed here d
not depend on the details of the geometry in general, th
are a number of elegant simplifications that follow for sp
cific symmetries.

Assuming no interpenetration of layers, the field at t
edge of the layer interface (y56dy/2) may be expanded in
terms of plane waves. From here on, the phase origins of
fields above and below the grating are taken to lie resp
tively on the centers of the upper and lower edges of
parallelogram unit cell~see Fig. 1! at pointsPj5(xj ,yj )5
6(sx/2,dy/2), j 51,2. Fields above and below the gratin
( j 51 and j 52, respectively! are then expanded in the form

V( j )~r !5 (
p52`

`

xp
21/2@ f p

( j )2e2 ixp(y2yj )

1 f p
( j )1eixp(y2yj )#exp@ iap~x2xj !#. ~4!

In Eq. ~4!, the wave amplitudes are denoted byf p
( j )6 , with

the prefactorsxp
21/2 introduced so as to normalize energ

quantities as the square modulus of the corresponding c
plex amplitude@15,16#. If the incident wave isEi polarized
~the electric field is perpendicular to the plane of incidenc!,
V denotes thez component of the electric fieldEz , while for
a H i polarized wave~the electric field is parallel to the plan
of incidence! V denotesHz . Note that the plane of incidenc
is defined by the direction of incident radiation and the n
mal to the grating plane. Here, we consider only the case
in-plane incidence so that the plane of incidence is thex-y
plane, perpendicular to the axes of the cylinders.

It is clear that thef p
( j )6 must be related to one anothe

through the reflection and transmission scattering matrice
the grating. However, as the field phase origins of each in
vidual grating do not coincide, in general, with the pha
origins P1 andP2 it is necessary to transform the basic sc
tering matrices (R(0), T(0), etc.!. If the basic scattering ma
trices have their phase origin at the origin of coordinates~as
is the case for the simple cylinder grating!, it is straightfor-
ward to show that the transformed scattering matrices w
phase origins at pointsP1 andP2 are given by

FT R8

R T8
G5QPF T(0) R8(0)

R(0) T8(0)GPQ, ~5!
3-2
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where

Q5FQÀ1 0

0 QG , P5FP 0

0 PG ,
0 represents the zero matrix, and

Q5diag@eiapsx/2#, P5diag@eixpdy/2#. ~6!

Denoting by f j
6 ( j 51,2) a column vector with element

f p
( j )6 , we can write the scattering of the incoming fields,f 1

2

and f 2
1 , from the grating in the matrix form

F f 2
2

f 1
1G5FT R8

R T8
GF f 1

2

f 2
1G . ~7!

B. Bloch condition

Returning to the array structure, we now search for q
siperiodic solutions satisfying Bloch’s theorem

u~r1 lmn!5eik0• lmnu~r !, ~8!

whereu is any field quantity, andk05a0x̂1b0ŷ denotes the
Bloch vector. The quasiperiodicity condition~4!, in the x
direction, is consistent with the family of plane wave fiel
that have direction sinesap /k. In contrast, there is no suc
constraint for the quasiperiodicity in they direction, and, in
the procedures discussed below,b0 is thus treated as an e
genvalue. Quasiperiodicity in they direction is characterized
by

f 2
25mf 1

2 , f 2
15mf 1

1 , ~9!

where

m5exp~2 ik0•e2!. ~10!

Combining Eq.~9! with Eq. ~7!, we obtain

WF50, ~11!

where

W5FT2mI R 8

R T82m21I G , F5F f 1
2

f 2
1G . ~12!

We now consider the structure of the eigenvalue equa
~12!. For computational purposes, all infinite dimension
matrices are truncated and so

P~m!5detW50 ~13!

is a polynomial with terms inm and m21. For lattices for
which sx50, i.e., for rectangular lattices of vertically sym
metric scattering elements that are also symmetric with
spect toy50, it can be shown thatT85T andR85R, and
thus P(m)5P(1/m). Accordingly, for each rootm of Eq.
~12! there must be a rootm21, with such a pair correspond
ing to forward and backward propagation through the latti
04660
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C. Symmetric lattices

We will return to a discussion of the distribution of th
eigenvalues in Sec. II E but note here that the existence
such relations for symmetric structures enables a factor
tion of the eigenvalue equation, yielding an eigenvalue pr
lem of half the dimension of the general form to be intr
duced in Sec. II D. Aside from being more computationa
compact, they are also more stable numerically, avoid
theinversion of matrices whose conditioning may
problematic.

We commence withy-symmetric structures composed
y-symmetric gratings arranged in a rectangular array. Not
that R5R8 andT5T8, we apply the unitary transformatio

I5
1

A2
F I I

2I I G ~14!

to Eq. ~11! to derive

W8Fg1

g2
G5F0

0G , ~15!

where

W85IWIT5FT1R2cI isI

isI T 2R2cI G , ~16!

Fg1

g2
G5I F f 1

2

f 2
1G5

1

A2
F f 1

21f 2
1

2f 1
21f 2

1G , ~17!

with c5(m1m21)/25cosg, s5(m2m21)/(2i)5sing.
From Eq.~15! we have a linear system that can be co

verted into a pair of equivalent eigenvalue equations

Si
21Tgi5

1

2c
gi ~ i 51,2!, ~18!

where

S15I1~T2R!~T1R!, ~19!

S25I1~T1R!~T2R!. ~20!

The eigenvalue equation~18! is highly stable and compu
tationally tractable. Since the eigenvalues occur in the fo
2c5m11/m, the eigenvaluesm and 1/m must be paired; tha
is, if m is an eigenvalue, then so is 1/m. The occurrence of
1/(2c) in Eq. ~18! implies that the eigenvalues are genera
with the real or propagating states (ucu<1) occurring before
the evanescent or nonpropagating states (ucu.1). Either of
the problems~18! may be solved to generatec and either of
g1 or g2, with the other vector of the pair being inferred fro
the system~15! and ~16!. From these,f 1

2 and f 2
1 are gener-

ated from an inversion of Eq.~17!. As will become apparen
below, the pairs of vectors (f 1

2 ,f 1
1) ~wheref 1

15m21f 2
2) are

very significant and may be used to form a reflection scat
ing matrix for a semi-infinite medium of inclusions.
3-3
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For y-symmetric structures withsx5dx/2, the grating lay-
ers interleave one another uniformly, as in a hexagonal
tice. With this value ofsx , thenQ5exp(ia0dx/4)Q0, where
Q05diag exp(ipp/2) and it follows that the eigenvalue prob
lem of Eqs.~11! and ~12! may be transformed to the form

W̃F̃50, where W̃5F T̃2m̃I R̃

R̃ T̃2m̃21I
G , ~21!

with

T̃5Q0
21PT(0)PQ0

21 , ~22!

R̃5Q0
21PR(0)PQ0

21 , ~23!

m̃5m exp~ ia0dx/2!. ~24!

The form of the eigenvalue equation~21! is identical to that
for the rectangular array and is thus amenable to the s
transformation used to factor~18!. The only essential differ-
ence is the replacement ofm by m̃ leading to deduction tha
the eigenvaluesm̃ and 1/m̃ are paired. This is illustrated late
in Sec. II E.

We finally observe that the above pairing relations
derived through algebraic manipulation of the eigenva
equations, relying solely on they symmetry of the grating
and the rectangular and centered rectangular symmetrie
the lattice. Since nothing has been assumed about the m
rial properties of gratings, the pairing relations are pur
structural in their origin and hold for both lossless and a
sorbing gratings.

D. General treatment

The general treatment of the eigenvalue problem mus
used in the absence of any symmetry and requires the
mulation in terms of theT matrix @11,17,18#. Returning to
Eq. ~7!, the eigenvalue problem may be cast in the form

F f 2
2

f 2
1G5T F f 1

2

f 1
1G , ~25!

where the scattering matrixT is given by

T5FT2R8T821R R8T821

2T821R T821 G ~26!

5FT 0

0 I GF I2AB A

2B I GF I 0

0 T821G , ~27!

where

A5T21R8, B5T821R. ~28!

We note that the form in Eq.~27! is derived by factorizing
the matrix in Eq.~26!. Of significance in the back propaga
tion problem is the ready construction of the matrixT21,
obtained by observing for anyA andB that
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F I2AB A

2B I G21

5F I 2A

B I2BAG , ~29!

thereby yielding

T 215F T21 2T21R8

RT21 T82RT21R8
G . ~30!

The Bloch factorsm are the eigenvalues of Eq.~25! and thus

T F f 1
2

f 1
1G5mF f 1

2

f 1
1G ~31!

from which them and f j
6 can be obtained using standa

techniques. Some care is required in the computation ofT21

and T821 and, for structures that exhibit particular symm
tries, the forms of the preceding section are numerica
more robust.

In any numerical implementation, the plane wave ser
are truncated to containNp terms and the matrixT is there-
fore of dimension 2Np , and consequently has 2Np eigenval-
ues. In what follows, we assume thatT is not defective and
thus possesses a complete basis of linearly indepen
eigenvectors. While problems in the accuracy of the extre
~very large and very small! eigenvalues can arise, in practic
only a truncated set of the eigenvaluesm in the vicinity of
the unit circle are of real significance~see, in particular, Sec
III !. Our experience has been that the most significant eig
values~i.e., those having the least absolute values ofc5(m
1m21)/2) are stable with increasing matrix size~i.e., in-
creasingNp).

E. Classification of the eigensystem

The pairing of eigenvalues can occur irrespective of l
tice symmetry, again partitioning the set of eigenvalues i
forward and backward propagating states. Figure 2~a! shows
the eigenvalue distribution for an arbitrary, lossless latt
~whose constituent element is they-symmetric cylinder grat-

FIG. 2. Eigenvalue distribution for an arbitrary, nonsymmet
lattice ~a! and for a hexagonal lattice~b!. The scattering matrix data
corresponds to a unit period gratingdx51 of cylinder voids of
radiusa50.3921 and refractive indexn50.8636 arranged in a uni
cell characterized bysx50.3420dx , dy50.8660dx ~nonsymmetric
lattice!, and sx5dx/2, dy5dxA3/2 ~hexagonal lattice!. Here, k
57.946 56 anda052.717 88. For the hexagonal lattice the prima
ray along which many of the eigenvalues are clustered isu5
2a0dx /2521.358 94.
3-4
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ing!, with rays drawn from the origin to each eigenvaluem in
the complex plane. The plot region has been scaled rad
according tor 5umu0.04 ~with r denoting the distance of th
plotted point from the origin! to compress the dynamic rang
of the data. On each ray, there is an even number of eig
values~at least one pair! and thus we deduce the pairing ru
that if m is an eigenvalue then so ism̄21, where the super-
posed bar denotes the complex conjugate. While this p
erty has been demonstrated for lossless structures in a
our computational work, an analytic proof of its existen
has thus far eluded us. This property fails to exist, howe
for absorbing gratings and possibly points to an applicat
of time reversibility in its derivation for lossless structure

Figure 2~b! shows the eigenvalue distribution for a los
less hexagonal lattice. The previous (m,m̄21) pairing is
again evident, as is the (m̃,m̃21) pairing derived in Sec. II C.
Again, we note that for lossy materials the former pairi
fails while the latter pairing, whose origin is purely stru
tural, is preserved. Asm̃5m exp(ia0d/2), then for lossless

materialsm̃ is associated with bothm̃̄21 andm̃21. Hence, for

this symmetry,m̃ is also paired withm̃̄, implying that them̃
must be real or occur in complex conjugate pairs. This
evident in Fig. 2~b!, recalling that the distribution of them
differs from that ofm̃ by a rotation ofu52a0d/2. Precisely
the same structure occurs for lattices exhibiting rectang
symmetry, this time with a principal axis ofu50.

We next partition the set of eigenvalues and eigenvec
into forward and backward propagating states. In the p
ence of loss, eigenvalues have eitherumu,1 or umu.1, while
for lossless structures some eigenvalues may haveumu51.
Now, designating the form of the eigenvector correspond
to an eigenvaluem i to be@ f i

2Tf i
1T#T ~suppressing the previ

ous subscript for convenience!, the vectorf i
2 denotes the

‘‘eigenincidence’’ into the layer from above, andf i
1 the cor-

responding ‘‘eigenreflection.’’ The pairing of eigenvalu
above leads to a natural partitioning of the eigenstates.
evanescent states are characterized byumuÞ1 and so for each
state such thatumu,1 there is one for whichumu.1. The
decay of the field in the forward propagation problem is th
mirrored by the associated eigenvalue that represents d
in the back propagation problem.

Propagating states have magnitudeumu51 and are again
paired, representing forward and backward propagation.
like the evanescent states, that can be differentiated acc
ing to whether their magnitudes are greater than or less
unity, the classification of propagating states can be de
mined only from a consideration of the direction of ener
flow characterized by the group velocity~see the Appendix!
that is proportional toEF /(kED), where EF denotes the
downward energy flux andED is the energy density per un
cell. The flux EF associated with a particular eigenstate
given by

EF5 (
pPVr

~ u f p
2u22u f p

1u2!22 Im (
p¹Vr

f p
2 f̄ p

1 , ~32!

whereV r denotes the set of propagating plane wave pro
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gating orders. This form ofEF is derived from an application
of Green’s theorem@16# to the functionV ~4!. SinceED is
purely positive, the direction of energy flow is determin
entirely by the sign ofEF .

WhenEF is positive there is a net flow of energy down
ward ~i.e., into the structure!, which we associate with for-
ward propagation. Conversely, whenEF is negative, the net
flow of energy is upwards away from the structure, and t
is associated with backward propagation. This relationshi
perhaps seen most clearly in the simple case of
y-symmetric grating embedded in a rectangular lattice
which R5R8 andT5T8. Here, the eigenvectors correspon
ing to m andm21 are

F f 2

f 1G , F f 1

f 2G , ~33!

respectively—a result that follows readily from the structu
of the original system of equations~11! and~12!. The change
from forward to backward propagation involves the transp
sition of m andm21, which in turn reverses the roles off1

and f2, thus reversing the direction of energy flow.
Table I displays the eigenvalues ofT that was used to

generate Fig. 2~b!. The data~see Figs. 7 and 8! correspond to
a hexagonal lattice of cylindrical voids in an arbitrary inc
dence configuration, with the most significantN518 eigen-
values shown. Eigenvalues 1–9 and 10–18, respectively
respond to the backward and forward travelling stat
Eigenstates 8–11 are propagating states, with the directio
propagation being determined by the sign of the energy

TABLE I. Properties of the 18 most significant modes for t
data corresponding to a hexagonal lattice displayed in Fig. 2~b!.
Columns 2 and 3 give the modulus and argument of the eigen

uesm̃5m exp(ia0d/2), while column 4, only the sign of which is
important, gives the energy flux~32!.

n um̃u arg(m̃)/p EF

1 2.2503107 0.0000 0.0000
2 2.1173105 1.0000 0.0000
3 1.4913105 20.5401 0.0000
4 1.4913105 0.5401 0.0000
5 8.6503104 0.0000 0.0000
6 2.8853102 0.0000 0.0000
7 8.8563102 1.0000 0.0000
8 1.0003100 0.1105 20.9783
9 1.0003100 20.7785 20.9900

10 1.0003100 0.7785 0.9900
11 1.0003100 20.1105 0.9783
12 1.12931022 1.0000 0.0000
13 3.46631023 0.0000 0.0000
14 1.156131025 0.0000 0.0000
15 6.706831026 0.5410 0.0000
16 6.706831026 20.5410 0.0000
17 4.723731026 1.0000 0.0000
18 4.443531028 0.0000 0.0000
3-5
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~column 3!—with positive fluxes indicating downward, o
forward, propagation. The remaining states are evanes
and carry no energy.

F. Application to band diagrams

We now apply the above method to the calculation
band structures, commencing with the procedure for
simple case of a rectangular lattice of sidesd1 andd2. The
primitive cell is then spanned bye15(d1,0) ande25(0,d2),
and the associated primitive cell in reciprocal space
spanned byu152p(d1

21,0) andu252p(0,d2
21). Any point

k05(a0 ,b0) ~in Cartesian coordinates! in reciprocal space
may then be written

k05j1u11j2u2 . ~34!

Consider now a diffraction problem for a single constit
ent grating of this lattice, the plane of which is parallel toe1

~and ẑ) and has periodd1. We consider an incident plan
wave ~possibly evanescent! of fixed frequency and inciden
angleu0, and observe that the phase change of the field o
one period in the plane of the grating isk0•e15kd1 sinu0
52pj1. Using the methods of Secs. II C and II D, we gen
ate scattering matrices and then solve the eigenvalue p
lem to yield eigenvaluesm5exp(2ik0•e2) @see Eq.~10!#.
From Sec. II B we recall thatj2 is an eigenvalue of the
problem, the value of which isj252argm/(2p), sincek0
•e252pj2. Each propagating solution (j2P@21/2,1/2#)
found in this way lies on the line of fixedj1 in the primitive
cell of the reciprocal lattice. We thus generate the band st
ture in the line defined by fixedv andj1. The complete band
structure is generated by varyingv andj1 ~or u0) @11#. We
note, in contrast, that plane wave methods generate the
structure in a different order with fixedj1 andj2 defining an
eigenproblem in whichv is the eigenvalue.

Of course the band structure can also be generated
considering diffraction by a constituent grating of periodd2
that is parallel toe2. The only difference is that we now
generate the band structure from a line of constantv andj2.
In fact, we can use any constituent grating that is paralle
the plane specified byẑ and h1e11h2e2 ~where@h1h2# are
the Miller indices! to generate the band structure on lines
constantv, orthogonal to this plane. In order to deal wi
this general case, and with the most general crystal lattic
is necessary to introduce a general framework that can c
with nonorthogonal basis vectors and arbitrary secti
through the array.

For a general lattice, we introduce general basis vectore1
ande2 for the direct lattice, and basis vectorsu1 andu2 for
the reciprocal lattice satisfying

u1•e152p, u1•e250;

u2•e150, u2•e252p. ~35!

As above, we take the lattice to be composed of constitu
gratings parallel to bothe1 ande2. It is convenient to formu-
late the method in terms of ‘‘formal’’ parametersẽ1 and ẽ2,
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into which we may substitute the actual vectorse1 ande2, or
some linear combination, as required for a particular
stance. In what follows, the formal parameters are uniform
denoted by the tilde nomenclature.

The grating code, i.e., the implementation of the diffra
tion theory for a single grating, may be regarded as an a
rithm A5A(v,k̃0g ,d̃) that computes scattering matrices
a single grating of periodd̃ that is irradiated with a field
whose component of the Bloch vector in the grating plane
k̃0g . We formally take the plane of the grating to be align
with ẽ1 and to have periodd̃5i ẽ1i . The projection of the
Bloch vector onto the plane of the grating isk̃0g5projẽ1

k0

and the grating is periodically replicated with displaceme
ẽ2 to form the lattice.

We must also introduce formal reciprocal lattice vecto
ũ1 andũ2 that satisfy relations identical to those in Eq.~35!.
Then, expanding the Bloch vectork0 in this basis, we write

k05 j̃1ũ11 j̃2ũ2 . ~36!

We begin by regarding the array as the replication o
basic grating elementG aligned with ẽ15e2, shifting each
layer relative to its predecessor byẽ252e1. In reciprocal
space, we haveũ15u2 andũ252u1. Consider now the line
KL in reciprocal space~Fig. 3! which is parametrized by
constantj̃1 and varyingj̃2P@21/2,1/2#. From Eq.~35!, it
follows thatk0•ẽ152pj̃1, indicating that a one period ste
in the directionẽ1 advances the phase of the field in th
grating plane by a constant 2pj̃1. To solve the required dif-
fraction problem for gratingG, we specify k̃0g5k0•ẽ1 /d̃1

with d̃15i ẽ1i , and invoke the grating algorithm with
A(v,2pj̃1 /d̃1 ,d̃1). We then compute the eigenvaluesm

5exp(2ik0•ẽ2) according to the methods of Secs. II C an
II D, and from k0•ẽ252pj̃2, we deducej̃252argm/(2p)
P@21/2,1/2#. Finally, we reconstruct the eigenvaluek0 from

FIG. 3. The unit cell and fundamental translation vectors for
reciprocal of an arbitrary lattice.
3-6
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Fa0

b0
G5ŨF j̃1

j̃2
G , ~37!

whereŨ is a matrix with columnsũ1 and ũ2.
In Fig. 3, the lineOL0 corresponds toj̃150, i.e., normal

incidence ontoG. The parallel edges of the primitive recip
rocal cell, PQ and SR, respectively havej̃1561/2 for
which k0•ẽ156p. In traditional grating terminology, thes
respectively correspond to Littrow mounts in the (21)th and
1st orders—for which the plane wave orders71 are respec-
tively diffracted back along the path of the primary incide
wave @19#.

Similarly, the primitive cell may be scanned with line
parallel to ũ15u1. This time, we consider incidence on th
basic grating elementG aligned with ẽ15e1 and replicated
with spacingẽ25e2. With these definitions, the above proc
dure carries through unaltered. We note that the scan
OM0 corresponds to a normal incidence configuration ont
grating parallel toe1, while the edgesRQ and SP corre-
spond to first order Littrow configurations.

FIG. 4. The band diagram for a square symmetric lattice
dielectric cylinders of normalized radiusa/d50.3 and refractive
index n53.0, for Ei polarization. The continuous lines have be
obtained from the Rayleigh multipole method, while the dots m
the eigenvaluesb0. The symbols on the abscissa represent the
ners of the irreducible part of the first Brillouin zone~see Fig. 5!.
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We now apply the method to the calculation of the ba
diagrams for two symmetric lattices. For the square ar
~Fig. 4!, the diagram shows the dimensionless frequen
(vd/2pc) as a function of Bloch’s vector (k0) as the bound-
ary GYMG of the irreducible part of the first Brillouin
zone—the octant shown in the left panel of Fig. 5—is tr
versed. Table II shows the parametrization of the recipro

lattice path and the direct lattice basis vectorsẽ1, defining the

grating plane, andẽ2 defining the replication displacemen
The table shows that segmentsGY and MG are computed
from the normal incidence properties of gratings of periodd
andA2d, while the segment YM requires a Littrow configu
ration for a grating of periodd. The points in Fig. 4 have
been calculated using this method, while the lines were
culated using the Rayleigh multipole theory applied to t
whole array@20#.

For the hexagonal array~Fig. 6!, the irreducible part of
the first Brillouin zone~Fig. 5! is parametrized in Table III.
What is initially surprising is that the three segments can
handled using only two normal incidence calculations
gratings of periodsd(GM) and A3d (MK and KG). To see

this, consider Table III, showing that on MKk0•ẽ152p—a
second order Littrow configuration. In this case, we would
required to operate the grating code withk̃0g52p/d̃1 lead-
ing to direction sines~of the plane wave orders! given by
ãp /k, where

f

k
r-

FIG. 5. The first Brillouin zone, and two of its replicates, for
square~left panel! and a hexagonal~right panel! array.
rse the
TABLE II. Parametrized paths and basis gratings for each of the segments required to trave
boundary of the first Brillouin zone for a square array of periodd. The columnsk 0 and ‘‘Range’’ show the

parametrization of the path and the range of the indicated parameter, while the vectorsẽi show the basis

vectors ~in Cartesian coordinates! of the direct lattice used in the calculations. The columnsd̃1 /d and

k 0•ẽ1 show the normalized period and phase change along a period of the grating.

Path k 0 Range ẽ1 /d ẽ2 /d d̃1 /d k 0•ẽ1

GY (0,k0y) F0,
p

d G (1,0) (0,1) 1 0

YM Sk0x ,
p

dD F0,
p

d G (0,1) (21,0) 1 p

MG k0S 1

A2d
,

1

A2d
D F0,

pA2

d G (21,1) (0,1) A2 0
3-7
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ãp5ã012pp/d̃152p~p11!/d̃1 .

The list of direction sines$ãp /k% for this configuration is
identical to that for normal incidence, except that the list
shifted by one place. The entries in the scattering matr
are similarly identical but shifted by one row and one c
umn. The corresponding eigenproblems for normal incide
and the second order Littrow mount are thus equivalent, g
erating the same eigenvalues but with eigenvectors wh
entries are displaced by one position. Thus, a single nor
incidence calculation for a grating of periodA3d placed in a
hexagonal array of spacingd/2 gives bands for bothGK and
MK. Due to the symmetry of the hexagonal array,KM8, the
extension ofGK ~see Fig. 5!, is equivalent to KM. Note that
in the case of a square array, the extension ofGM is not
equivalent to any of the segments MY orGY. Consequently,
to calculate the band diagram, we need three gratings f
square array but only two for a hexagonal array. In the c
of a hexagonal array, the two sets of bands can be di
tangled, since the arguments of the eigenvaluesm associated
with GK are in the range@22p/3,0#, while those associate
with KM are in the range@2p,22p/3#.

Once again, the photonic band diagram produced by
method~Fig. 6! is identical with the diagram obtained from

FIG. 6. The band diagram for a hexagonally symmetric lattice
dielectric cylinders of normalized radiusa/d50.3 and refractive
index n53.6, for Ei polarization. The continuous lines have be
obtained from the Rayleigh multipole method, while the dots m
the eigenvaluesb0. The symbols on the abscissa represent the
ners of the irreducible part of the first Brillouin zone~see Fig. 5!.
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the Rayleigh multipole theory for a hexagonal array@20#. In
this case, however, in the application of the method for
segmentGKM interpenetration occurs for radiia/d.0.25
and thus the application may not be strictly valid. Howev
as is evident from Fig. 6, the results are in excellent agr
ment with those obtained from multipole theory. In this r
gard, the insistence on noninterpenetration is a sufficient
not a necessary condition for the method. The issue is
rectly related to the Rayleigh controversy of diffraction gra
ing theory@12# concerning the validity of plane wave repre
sentations for outgoing fields. The first insight into what,
the time~the 1960s!, was a highly contentious problem cam
with the work of Petit and Cadilhac@21#. They considered an
analytic continuation into the complex plane of the pla
wave expansion of the outgoing field for a perfectly condu
ing, sinusoidal grating~Dirichlet boundary conditions! and
demonstrated that the Rayleigh expansion converged
vided that the groove depth was sufficiently shallow. T
consideration of the Rayleigh hypothesis has since been
ther generalized@22–24# to show that use of the plane wav
expansion is valid provided the series converges, with
crossover occurring at a singularity of the analytic continu
tion of the diffracted field. It is the location of the singular
ties that characterizes the necessary condition and, in
case, they depend on both the radius of the cylinders
their dielectric constant. While we have not closely inves
gated the nature of the necessary condition, nevertheless
have observed the effects of layer interpenetration becom
evident more quickly with increasing refractive index of th
cylinders.

III. SCATTERING IN FINITE STACKS

A. Formulation

Following the partitioning of the eigenstates into forwa
and backward propagation, it is natural to partition the eig
value equations~31! similarly. Recasting Eq.~31! for all i in
matrix form we may write

T F̃5F̃L̃, ~38!

where

f

k
r-
rse the
in
TABLE III. Parametrized paths and basis gratings for each of the segments required to trave
boundary of the first Brillouin zone for a hexagonal array of periodd. Other quantities are as defined
Table II.

Path k0 Range ẽ1 /d ẽ2 /d d̃1 /d k0•ẽ1

GM (0,k0y) F0,
2p

dA3
G (1,0) S 1

2,
A3

2 D 1 0

MK Sk0x ,
2p

dA3
D F0,

2p

3d G (0,A3) S2 1
2,

A3

2 D A3 2p

KG k0S 1
2,

A3

2 D F0,
4p

3d G S 2
3
2 ,

A3

2 D (21,0) A3 0
3-8
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F̃5FF2 F28

F1 F18
G and L̃5FL 0

0 L8
G . ~39!

The left and right partitions of the block structured matrixF̃
and the diagonal matricesL5diag@m i # and L85diag@m i8#

that constitute the left and right partitions ofL̃ respectively
correspond to the forward and backward propagation pr
lems.

TheT matrix represents propagation across a single la
and, correspondingly,

T n5~ F̃L̃F̃21!n5F̃L̃nF̃21 ~40!

denotes the propagation operator for a stack ofn identical
layers. Denoting

F̃21[G̃[FG2 G1

G28 G18
G ~41!

and writingT n in a form analogous to Eq.~25!, we deduce

FTn2Rn8Tn8
21Rn Rn8Tn8

21

2Tn8
21Rn Tn8

21 G5FF2 F28

F1 F18
G FLn 0

0 L8nG
3FG2 G1

G28 G18
G . ~42!

Similarly, from the form of the backward propagation ope
tor T 21 ~30! whose eigenvalues are the reciprocals of th
for T, we may form

F Tn
21 2Tn

21Rn8

RnTn
21 Tn82RnTn

21Rn8
G5FF2 F28

F1 F18
G FL2n 0

0 L82nG
3FG2 G1

G28 G18
G . ~43!

Expanding Eq.~43! and equating like terms we derive e
plicit expressions for the scattering matrices of then layer
structure in terms of those for a single layer. The compu
tionally stable forms that we use in our calculations are

Tn5G2
21LnF2

21@ I1F28 L82nG28 G2
21LnF2

21#21, ~44!

Rn5@ I1F18 L82nG28 G2
21LnF1

21#F1F2
21

3@ I1F28 L82nG28 G2
21LnF2

21#21. ~45!

Similar expressions may be derived forTn8 andRn8 using Eq.
~42!.

Figure 7 displays the normal incidence reflection sp
trum for an 88-layer stack that models a photonic crys
found in a living creature, the sea mouse@25,26#. The stack
comprises a hexagonally packed array~of period d
50.51 mm) of hollow cylinders ~of radius a50.2 mm)
filled with sea water of indexnc51.33 in a matrix of chitin
of refractive indexnm51.54. The results have been calc
lated using Eq.~45! and are identical to those based on o
04660
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earlier recurrence method@15#. The strong reflection around
l5640 nm gives the sea mouse its brilliant red iridesce
@25,26# at normal incidence and is due to the partial band g
shown in Fig. 8. The band diagram has been computed u
the theory of Sec. II C and II D and displays the band gap
complexk0 space, displaying the trajectory of the prima
evanescent state crossing the gap.

B. The matrix R`

It is natural now to examine the limit behavior with in
creasing stack depth (n→`) to establish the reflection sca
tering matrix of a semi-infinite stack. The model must
formulated such that no wave can return from the bottom
the stack. While the evanescent terms are such that
mn,m82n→0 asn→`, it is necessary to suppress the refle
tion of propagating states, for whichumu5um8u51, from the
bottom of the stack. This can be achieved conceptually

FIG. 7. Reflectance of a stack of 88 cylinder gratings~with dx

50.51 mm), hexagonally packed, at normal incidence (a050).
The cylinders are infinitely long, have a radiusa50.2 mm, and a
refractive indexnc51.33, and are embedded in a background w
nm51.54. The vertical dashed lines correspond to the band ga
the photonic band diagram shown in the inset.

FIG. 8. Complex band diagram for the sea mouse spine, sh
ing the gap states. Here, and in Fig. 7, the braces indicate the
tion of the partial band gap. Note that the Im(b0)50 plane corre-
sponds to the inset of Fig. 7.
3-9
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introducing an arbitrarily small amount of loss, ensuring th
the elements of bothL821 andL have magnitudes less tha
unity and that powers of these matrices approach0 with in-
creasingn. Thus, from Eq.~45!,

R`5 lim
n→`

Rn5F1F2
21. ~46!

Correspondingly, a similar analysis based on Eq.~42! yields
the reflection scattering matrix of the bulk crystal corr
sponding to propagation in the reverse direction,

R8̀ 5 lim
n→`

Rn85F28 F18
21. ~47!

Two alternative forms forR` andR8̀ ,

R`52G18
21G28 , R8̀ 52G2

21G1 , ~48!

may be established from Eqs.~42! and~43!. The consistency
of these forms with Eqs.~46! and~47! is assured by Eq.~41!.

The computation ofR` using Eq.~46! can require some
care as some of the spectral quantities can be difficul
obtain accurately for eigenvalues having extreme mag
tudes. However, such problems may be overcome by trun
ing the column dimensions ofF1 and F2 to accommodate
only those most significant eigenstates—and those whose
curacy can be assured—and by computing the inverse oF2

using the generalized inverse through the singular value
composition@27#. In this way, the product of the truncate
matrices can be constructed as a series of projections tha
have found to converge quite rapidly.

We complete this section with an alternative derivation
R` and R8̀ based directly on the defining eigensystem.
general, any field must be able to be written as a linear c
bination of eigenstates. Thus,

F f 2

f 1G5(
i

g iF f i
2

f i
1G ~49!

for constantsg i . It thus follows that

f 25F2g, f 15F1g, ~50!

where theF6 are matrices with columnsf i
6 and with g

5@g i #. Eliminating g from Eq. ~50! yields

f 15F1F2
21f 2, ~51!

from which we infer the definitionR`5F1F2
21.

C. Physical significance of the spectral quantities

To this point, the various spectral quantities associa
with T have been used in a relatively abstract manner.
now seek to attribute some physical significance to th
quantities. We begin withT 2nF̃5F̃L̃2n from Eq. ~38!, ex-
panding the (1,1) partition to yield

Tn
21F22Tn

21Rn8F15F2L2n. ~52!
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From this, it follows that

Pn
25

def

~ I2Rn8R`!21Tn5F2LnF2
21, ~53!

in which we have used the definition~46! of R` . This result
holds for anyn and is the spectral decomposition of th
propagation matrixPn .

The significance of the result may be understood by c
sidering a stack ofn grating layers placed atop a stack
infinite depth, the reflection matrix of which isR` . The
operatorPn , when applied to a fieldf incident upon the top
of the n-layer stack, generates the vector of amplitudes
the downward propagating field between then-layer stack
and the semiinfinite array below. InPn , the postmultiplied
matrix Tn transmits the field through then-layer structure
while the matrix (I2Rn8R`)21 generates multiple reflection
in the cavity by reflection of the down-going field off th
array (R`) and of the up-going field reflecting off then-layer
structure from above (Rn8). Similarly, the upward going field
in the same interface isPn

1f, wherePn
15R`Pn

2 , whose spec-
tral decompositionPn

15F1LnF2
21 . We finally note from Eq.

~53! that for lossy gratings the eigenvalues must all ha
magnitude less than unity as absorption causes the field
decay with increasing depth into the stack.

Accordingly, Eq.~53! indicates that the downward propa
gating field between then-layer and the semi-infinite arra
can be understood as a superposition of Bloch functions
the structure, each of which is associated with its own eig
value or Bloch factormn. Specifically, the matrixF2

21 trans-
forms a plane wave field to the natural Bloch basis, the
agonal matrix Ln scales each Bloch function by th
associated Bloch factor, while the matrixF transforms the
field back to the plane wave basis.

In a similar manner, we may also derive

~ I2RR8̀ !21T85F18 L821F18
21, ~54!

T821~ I2RR`
21!5F1LF1

21 , ~55!

T21~ I2R8R8̀ 21!5F28 L821F28
21. ~56!

by expanding the various partitions of Eq.~43!. The first of
these, Eq.~54!, is the single layer (n51) analog of Eq.~53!
except for propagation in the reverse direction. The phys
meaning of Eqs.~55! and ~56! is more difficult to deduce
and, in fact, neither have real computational significan
except in the long wavelength asymptotics for which th
provide a way of deducingR` and R8̀ directly. We have
included them to show the matrices whose spectral dec
positions define the outgoing fieldsF1 andF28 .

D. Asymptotic forms for deep arrays

The relationships of the Sec. III C, together with

F2G25I2R8̀ R` , ~57!

F28 G28 52R8̀ R`~ I2R8̀ R`!21, ~58!
3-10
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F1G25R`~ I2R8̀ R`!2152F18 G28 , ~59!

that follow from the definition ofG̃ ~41!, enable the trans
mission matrix~44! of ann-layer structure to be recast in th
following, more physically significant form:

Tn5~ I2R8̀ R`!~F2L2nF2
212F28 L82nF28

21R8̀ R`!21.
~60!

This expression closely parallels the scalar transmission
efficient of a simple Fabry-Perot cavity@28#

T5
12r2

exp~2 iw!2r2 exp~ iw!
, ~61!

wherer is the amplitude reflection coefficient of the mirro
and w is the phase advance upon propagation through
cavity. Note the correspondence between the respective
lar and matrix quantities. In particular, observe the cor
spondence between the reflection quantitiesr2 and R8̀ R` ,
and the phase factors exp(7iw) and L2n and L82n. Note
that for up-down symmetric structures, the matricesL and
L8 are inverses of one another. Equation~60! is therefore
similar to the usual expression for the transmission o
Fabry-Perot filter, but generalizes it to include all the d
fracted orders of the two ‘‘mirrors.’’

Finally, for the particular case of absorbing gratings,
eigenvalues ofL have magnitudes less than 1 and all eige
values inL8 have magnitudes greater than 1. Thus,Ln→0
andL82n→0, and forn sufficiently large we take these to b
negligible. Using Eq.~25!, Eq. ~60! then reduces to

Tn;~ I2R8̀ R`!~F2L21F2!n

;~ I2R8̀ R`!@~ I2R8̀ R`!21T#n, ~62!

for largen.

IV. HOMOGENIZATION AND R `

As a demonstration of the significance ofR` , we con-
sider one- and two-dimensional photonic crystals in the lo
wavelength limit and demonstrate thatR` provides a useful
mechanism for computing the effective dielectric constan
a homogenized medium.

We begin with a model of a one-dimensional photon
crystal in which the period cell consists of two uniform la
ers of refractive indicesn1 andn2, of thicknessesc1 andc2,
with dy5c11c2. The Bloch factor, or propagation consta
in thex direction, isa05kn1 sinu15kn2 sinu2, whereu1 and
u2 are the angles of the propagating rays in media 1 an
The corresponding propagation constants in they direction
are

x i5Ak2n i
22a0

2. ~63!

In this case, the reflection and transmission scattering
trices reduce to scalar form
04660
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R5
r~12e2ix2c2!

12r2e2ix2c2
eix1c1, ~64!

T5
~12r2!eix2c2

12r2e2ix2c2
eix1c1, ~65!

where the multiplicative term exp(ix1c1) is used to pad the
layer of thicknessc2 with two background layers of indexn1
and thicknessc1/2 to form a period layer of thicknessdy . In
Eqs.~64! and ~65!, r denotes the interface reflection coef
cient which, forEi polarization, isr5(x12x2)/(x11x2).
After substitutingR ~64! andT ~65! into the eigenvalue equa
tion ~11! we derive

FT2m mR

R mT21GF f 2

f 1G5F0

0G , ~66!

which, after some manipulation, can be written in t
Kronig-Penney form

cos~x1c1!cos~x2c2!2
1

2 S x1

x2
1

x2

x1
D sin~x1c1!sin~x2c2!

5cos~b0dy!, ~67!

where m5exp(ibdy). The quasistatic limit of Eq.~67!, in
which we take small argument asymptotic expansions, yie

x1
2c11x2

2c25b0
2dy , ~68!

reducing to

k2«eff 5 a0
21b0

2 5
def

k0
2 , ~69!

where«eff is given by the Wiener formula@29# of electro-
statics

«eff5n1
2 c1

dy
1n2

2c2

dy
. ~70!

In the dispersion relation of Eq.~69!, namely, kneff
5k0 , k0,'5(a0 ,b0) is the projection of the crystal mo
mentum onto thex-y plane andneff5A«eff. In keeping with
the definition~63! of the propagation constantsx i , it is natu-

ral to introduce the constantx`5Ak2«eff2a0
2 corresponding

to propagation in an unbounded medium of effective perm
tivity «eff and from Eq.~69! it is clear thatb05x` .

The null vectors of the eigenequation then enable us
construct the reflection coefficientR` . Taking the quasi-
static limit of the eigenvalue equation~11!, we form

F ~x`2x1!2 ~x1
22x`

2 !

2~x1
22x`

2 ! ~x`1x1!2G F f 2

f 1G5F0

0G , ~71!

the null space of which characterizes the forward and ba
ward propagating eigenstates. Selecting the null vector
responding to the forward propagating wave associated w
b051x` , we calculate
3-11
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R`5
x12x`

x11x`
, ~72!

the Fresnel reflection coefficient corresponding to propa
tion into a unbounded medium of permittivity«` .

The result~72! is the basis of the ‘‘electrostatic’’ metho
of calculating the effective permittivity of two- and three
dimensional photonic crystals. Here, the specular orde
R` is used to define a reflection coefficientr 5R00

` , for Ei
andH i polarizations, respectively, from which we may ca
culate the ‘‘electrostatic’’ refractive index and infer an effe
tive permittivity according to

nstat5
12r

11r
, «eff5nstat

2 ~73!

for normal incidence (a050). An alternative method esti
mates the ‘‘dynamic’’ refractive index from the slope of th
acoustic band. Again for normal incidence, we havem
5exp(ib0dy) and we define@8#

ndyn5
db0

dk
'

b0

k
, «eff5ndyn

2 . ~74!

The estimates of«eff are functions of the wave numberk,

«eff ~k!5«01«1k1«2k21«3k31•••, ~75!

and we compute a sequence

$«eff ~k0!,«eff ~k0/2!,«eff ~k0/4!, . . . %,

to which we apply Richardson extrapolation@30# to acceler-
ate the convergence of the estimates to the static l
«eff (0).

In Tables IV and V we show the five step extrapolati
table for the calculation of the effective permittivity of
square symmetric lattice of dielectric cylinders of normaliz
radius a/d50.3 and refractive indexn53.0, subject to an
electric field oriented perpendicular to the axes of the cy
ders (H i polarization!. This calculation exploits scatterin
matrices from theH i diffraction problem, in which we have
preserved only the five most significant plane wave d
fracted orders$22,21,0,1,2%. We see that excellent conve
gence is obtained in five steps commencing with a norm
ized wavelength ofl/d525.0. The extrapolated limit o
«eff51.666 17 is to be compared with the true value of«MP

TABLE IV. Dynamic extrapolated estimate of«eff for H i polar-
ization.

l/d
n 25 50 100 200 400

1 1.67 128 1.667 43 1.666 48 1.666 25 1.666 1
2 0 1.663 59 1.665 53 1.666 01 1.666 13
3 0 0 1.666 18 1.666 17 1.666 17
4 0 0 0 1.666 17 1.666 17
5 0 0 0 0 1.666 17
04660
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51.666 16 obtained from the Rayleigh multipole theory
electrostatics, and its well-known dipole approximation, t
Maxwell-Garnett formula«MG51.664 82. We have also ap
plied the method to the calculation of the permittivity of a
array with an electric field oriented parallel~i.e., theEi prob-
lem! to the cylinders and found the convergence to
Wiener@29#, or linear mixing formula, to be extremely rapid

The Ei and H i problems are distinguished by a marke
dependence on the interlayer coupling mechanism. To inv
tigate this, we truncated the scattering matrices at ordep
P$0,1,2, . . . ,5% and calculated«eff in each case. The result
are shown in Table VI and reveal that forEi polarization
convergence is achieved by the inclusion of only the spec
order in the scattering matrices, while forH i polarization,
convergence requires the inclusion of both specular and
nescent orders. This agrees with previous work@31# in which
it was shown that long wavelength homogenization w
dominated by the monopole term in the cylindrical harmo
field expansion that is related directly to the specular pla
wave order. In contrast, homogenization forH i polarization
is dictated by the dipole term, the expansion of which
plane waves requires both specular and evanescent ord

V. LONG WAVELENGTH FORMULATION

For sufficiently long wavelengths, the coupling betwe
layers is dominated by the specular (p50) order that is the
sole propagating channel. Provided that the layers are s
ciently separated and that evanescent coupling is neglig
the scattering matrices can be replaced by a single sc
element corresponding to input and output in the zeroth or

TABLE V. Static extrapolated estimate of«eff for H i polariza-
tion.

l/d
n 25 50 100 200 400

1 1.671 83 1.667 58 1.666 52 1.666 26 1.666 1
2 0 1.663 33 1.665 46 1.665 99 1.666 12
3 0 0 1.666 17 1.666 17 1.666 17
4 0 0 0 1.666 17 1.666 17
5 0 0 0 0 1.666 17

TABLE VI. Comparison of the effect of different interlayer cou
pling mechanisms on«eff for bothEi andH i polarization number of
plane wave ordersp. Here, scattering matrices contain the orde
$2p,2p11, . . . ,0,1, . . . ,p%.

«eff(0)
p Ei polarization H i polarization

0 5.241 15 1.676 09
1 5.241 15 1.666 20
2 5.241 15 1.666 17
3 5.241 15 1.666 17
4 5.241 15 1.666 17
5 5.241 15 1.666 17
3-12
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POTONIC BAND STRUCTURE CALCULATIONS USING . . . PHYSICAL REVIEW E64 046603
channel. In what follows, we initially derive results for los
less structures and extend them to highly conducting grat
at long wavelengths.

As we have seen, a layered media is characterized by
key quantities, the eigenvaluesm and the reflection coeffi-
cient R` . Here we demonstrate their close interrelationsh
deriving a simple formula that predicts the location of ba
gaps at long wavelengths, for which only the specular d
fracted order is propagating.

We denote byR and T the single layer reflection an
transmission coefficients corresponding to unit inciden
from above, and byR8 andT8 the corresponding coefficient
for incidence from below. From the reciprocity theorem, t
forward and backward transmission coefficients are identi
i.e., T5T8. While RÞR8 in general, a relationship betwee
them can be derived using the principle of time reversal.
consider an initial problem corresponding to incidence fr
above and, under time reversal, we return the two outgo
fields—a wave of amplitudeR̄ from above, and one of am
plitude T̄ from below. These form an upward going wave
amplitudeRR̄1TT̄ above and a downward going wave
amplitudeTR̄1R8T̄ below. From the principle of time rever
sal, it follows that

RR̄81TT̄51, ~76!

TR̄1R8T̄50. ~77!

By considering a second problem associated with unit in
dence from below and, by returning its outgoing waves
follows similarly that

R8R̄1TT̄51, ~78!

TR̄81RT̄50. ~79!

From Eqs.~76! and ~78! it follows that uRu5uR8u and from
Eqs.~77! and ~79! we see that

exp~2icT!52exp@ i ~cR1cR8!#, ~80!

wherecT5argT, cR5argR, andcR85argR8.
We commence with the eigenvalue equation~12! which,

in the scalar approximation, reduces to a quadratic equa

m222bm1150, ~81!

b5
T22RR811

2T
5

coscT

uTu
, ~82!

a result that follows from Eq.~80!. Sinceb is real for lossless
structures, it follows that propagating modes may occur
conjugate pairs of eigenvaluesm of unit magnitude provided
that b2<1, and as evanescent modes associated with re
rocal pairs of real eigenvalues forb2.1.

We next considerR` and R8̀ , observing that the corre
spondence between them and the respective eigenvalum
and m851/m is given by the scalar forms of Eqs.~53! and
~54!:
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R`5
12Tm21

R8
, ~83!

R8̀ 5
12Tm21

R
, ~84!

so thatR8R`5RR̀8 . It may be shown that these forms a
the fixed points of the usual recurrence relations that are u
to calculate the reflection coefficient of a stack properties
a recursive or inductive manner@15#. Now, from the respec-
tive pairs of spectral forms~53! and~55!, and~54! and~56!,
we may derive quadratic equations inR` and R8̀ that are
linked according to

R`5R̃` exp@ i ~cR2cR8!/2#, ~85!

R8̀ 5R̃` exp@2 i ~cR2cR8!/2#, ~86!

whereR̃` satisfies the quadratic equation

R̃`
2 22aR̃`1150, ~87!

a52
T22RR821

2uRu
exp2 i ~cR1cR8!/2

5cos@~cR1cR8!/2#/uRu. ~88!

From Eqs.~82! and ~88! it follows that

b2215
uRu2

uTu2
~12a2!, ~89!

implying that for propagating states~i.e., b2<1, a2

>1) R̃` must be the minimum magnitude real solution
Eq. ~87!. Correspondingly, for evanescent or band gap sta
R̃` is a complex number of unit magnitude and, in eith
case, it follows readily thatR`5R̄8̀ . We also observe tha
the scalar resultuR`u51 that holds in a band gap shows th
the crystal behaves as a mirror. Its generalization, to
scattering matrices, can be shown to be

R`
HI rR`5I r1 i IeR`2 iR`

HIe , ~90!

where I r is a diagonal matrix that selects the propagat
plane wave ordersV r ~i.e., @ I r #pq5dpq for pPV r) andIe is
the corresponding diagonal matrix that selects the evanes
plane wave orders~i.e., I r1Ie5I ). The derivation follows
the treatment of Bottenet al. @16# and has been verified nu
merically.

The transition from propagation to evanescence delim
the band gap and occurs whenuau5ubu51. That is, when

uRu5cos~cR1cR8!/2 or uTu5coscT . ~91!

While these derivations assume lossless media, the re
also apply to highly conducting~lossy! materials, as is evi-
dent from Fig. 9 that displays the reflectance (R), transmit-
tance (T ), and absorptance (A), defined as@15#
3-13
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R5uRu2, T5uTu2, A512R2T, ~92!

of a 25-layer square symmetric stack of gold cylinders
period dx51.0 mm and radiusa50.2 mm. For this appli-
cation we used the dielectric function of gold obtained
interpolating the experimental data from Ref.@32#. We see
that the boundaries of the band gaps are well approxim
by Eq. ~91! and note that these are slightly displaced fro
those of the corresponding perfectly conducting struct
~i.e., a structure consisting of perfectly conducting cylind
leading to Dirichlet and Neumann boundary conditions
the Ei and H i field problems, respectively!, shown in the
band diagram at the top of the figure.

Also shown in Fig. 9 is the reflectance of the semi-infin
array uR`u2 @calculated according to Eq.~83!# that closely
follows the actual data (R) for the 25 layer structure. Ob
serve, in the propagation band region for 1.66&l&2.05, that
the transmittance (T ) is quite low, and that the reflectanc
(R) is reduced by enhanced or anomalous absorptanceA)
@33#. In contrast, in the second propagation band region
&l&1.23) the transmittance is very low, while the refle
tance and absorptance are almost equal.

Finally, we consider the long wavelength form of th
transmission coefficientTn using Eq.~60!:

Tn5
~12uR`u2!mn

12uR`u2m2n
. ~93!

Clearly, uTnu maximizes at 1 whenm2n51 and minimizes
when m2n521, the latter value defining an envelop
touched by the transmission minima, whose form is

FIG. 9. Reflectance (R), transmittance (T ), and absorptance
(A) for Ei polarization, for a stack of 25 cylinder gratings
vacuum, forming a square array (dx5dy51 mm, sx50). The cyl-
inders are made from gold and have a radiusa50.20 mm. The
dashed curve shows the reflectanceuR`u2 of a semi-infinite stack.
The vertical thick lines atl151.23 mm, l251.66 mm, andl3

52.05 mm, determined by the intersectionsuRu5ucoscRu, mark
the edges of the partial gaps for the stack of gratings. The in
above the plot, shows the regionGY ~see Fig. 5! of the photonic
band diagram for a square array (dx5dy51 mm, sx50) of per-
fectly conducting cylinders (a/dx51) in vacuum, with the gray
rectangles specifying the partial gaps.
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uTenvu5
12uR`u2

11uR`u2
5211

1

auR`u
. ~94!

For up-down symmetric layers, it follows from Eqs.~85! and
~86! that

uTenvu2512
1

a2
512

uRu2

cos2 cR

. ~95!

Figure 10 displays the envelope and the position of the b
gap delimited byuRu5ucoscRu, coinciding with the base of
the envelope. We note that the positions of the transmiss
maxima and minima are given by

cos~2cR!5uRu22uTu2cos arg~k j !, ~96!

wherecR is the phase of the reflected field andk denotes the
nth roots of 1, in the case of the fringe maxima, and thenth
roots of21, for the fringe minima. These roots are

k j
max5expF i

2 j p

n G , ~97!

k j
min5expF i

~2 j 11!p

n G , ~98!

for j 50,1, . . . ,n21. In general, however, Eq.~96! has no
closed form solution as the reflected and transmitted effic
cies are functions of wavelength, as is the phase of the
flected fieldcR(l)5cR

0(l)12pdy/l, wherecR
0 is the re-

flected field phase relative to phase origin throughy50.

t,

FIG. 10. Ei polarization: envelope of the transmittance and t
positions of the partial band gaps, delimited byuRu5ucoscRu, for a
stack of eight cylinder gratings in vacuum, forming a square ar
(dx5dy51 mm, sx50). The cylinders are of radiusa/dx50.3
and refractive indexncyl53. The vertical thick lines, determined b
the intersectionsuRu5ucoscRu ~dashed curves!, mark the edges of
the partial gaps for the stack of gratings. The envelope that touc
the interference transmittance minima is given by Eq.~95!.
3-14
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VI. INFERENCE OF TWO-DIMENSIONAL LATTICE
SUMS

Thus far, the eigenvalue method has been used to ca
late band structures from plane wave scattering matrices
this section, we show that it can be also applied to the wa
guide modal fields for problems formulated with the Ra
leigh method to derive computationally important relatio
ships between the lattice sums of the two-dimensional lat
and those of the constituent grating.

We follow the treatment and nomenclature of@15# and
consider a cylinder grating of perioddx with a single cylin-
der per period. In the vicinity of each cylinder, the field
expanded in cylindrical harmonics

V~r !5 (
n52`

`

@AnJn~kr !1BnHn
(1)~kr !#einu, ~99!

wherek denotes the wave number from the Helmholtz d
ferential operator¹21k2. At the surface of each cylinder
the physical boundary conditions impose relationships@15#
of the form

Am52MmBm . ~100!

Following @15# and applying Green’s theorem over the u
cell, we derive the Rayleigh identity that expresses the co
ficients of the regular part of the field (An) in terms of the
coefficients of sources on all the other cylinders (Bn) and
sources at infinity~i.e., plane waves!. Thus,

An5 (
m52`

`

Sn2m
G Bm

1 (
p52`

`

xp
21/2@~21!ne2 inupdp

21einupdp
1#,

~101!

where theSl
G denote the grating lattice sums

Sl
G5 (

nÞ0
Hl

(1)~kunudx!e
2 i l arg(n)eia0ndx, ~102!

that specify the multipole contributions arising from sourc
at the centers of the cylinders. The final term in Eq.~101!
comprises two plane wave sources respectively inciden
the grating from above$dp

2% and below$dp
1%, where thedp

6

are coefficients in plane wave expansions of the form

( xp
21/2dp

6 exp@ i ~apx6xpy!#. ~103!

Substituting the boundary conditions~100! into the field
identity ~101!, and recasting the expression in matrix for
we have

~SG1M !B52~UJx21/2d 21Kx21/2d 1!, ~104!

where
04660
u-
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n

SG5@Snm
G #5@Sn2m

G #, U5diag@~21!n#,

J5@Jnp#5@e2 inup#, K5@Knp#5@einup#,

x5diag@xp#, d 65@dp
6#.

The outgoing fields above and below the grating may
reconstructed in terms of the incident plane wave fields
fields radiated by the cylinders@15#. Above the grating, the
upward going field has components

f p
15dp

11
2

idx
xp

21/2 (
n52`

`

Bne2 inup, ~105!

with the first term denoting the specular transmission of
incident field from below, and the second term represent
the diffracted field. In matrix form, the outgoing plane wa
fields above and below the grating are, respectively,

f 15d11
2

idx
x21/2JTB ~106!

and

f 25d 21
2

idx
x21/2KTUB. ~107!

The modes of a general two-dimensional lattice are n
formed by imposing the Bloch condition, which requires th

m exp@ i ~apsx/22xpdy/2!#dp
2

5exp@2 i ~apsx/22xpdy/2!# f p
2 ,

m exp@ i ~apsx/21xpdy/2!# f p
1

5exp@2 i ~apsx/21xpdy/2!#dp
1 ~108!

for the pth plane wave coefficient, taking into account th
need to adjust plane wave phase origins in accordance
Sec. II A. In matrix form, we have

f 25mQ2P22d 2, f 15m21Q22P22d 1 ~109!

and, substituting these into Eqs.~106! and~107!, we express
the eigenincident fieldsd 6 in terms of the source coeffi
cientsB. In turn, these are substituted into the field ident
~105! to yield a homogeneous system that is the Rayle
identity for the two-dimensional array:

H SG1
2

d FUJ
x21

mQP212I
KTU1K

x21

m21Q21P212I
JTG

1M J B50, ~110!

or

@SG1DS1M #B50. ~111!
3-15
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This form ~111! of the Rayleigh identity must be equiva
lent to the alternative form in which the modes of lattice a
expressed directly in terms of the array lattice sums@8#

@SA1M #B50, ~112!

with the boundary condition matrixM being the same in
both cases. Here,

SA5@Snm
A #5@Sn2m

A #, ~113!

where

Sl
A5 (

(n,m)
8 Hl

(1)~ku lnmu!exp@2 i l arg~ lnm!#eik0• lnm,

~114!

and the prime means that the term (n,m)5(0,0) is excluded
from the sum. By subtracting Eq.~111! from Eq. ~112!, we
have

@SA2~SG1DS!#B50, ~115!

with the coefficient matrix in Eq.~115! depending solely on
the lattice geometry parameters and not involving mate
properties such as cylinder radius or electric permittivi
Accordingly, we deduce that Eq.~115! must hold for allB
and thus

SA5SG1DS. ~116!

While the derivation has involved plane wave coupling b
tween layers, the final form of the result is independent
the cylinder radius and should thus be valid for all lattic
including those with interpenetrating layers for which pla
wave coupling between layers is no longer appropriate.

Finally, we infer expressions for the array lattice sumsSl
A

in terms of grating lattice sumsSl
G and correction terms

DSl :

Sl
A5Sl

G1DSl , ~117!

where

DSl5
2

d (
p52`

`
1

xp
F eil up

m21Qp
21Pp

2121
1

~21! le2 i l up

mQpPp
2121

G .

~118!

For p sufficiently large the term exp(iup)5(xp1iap)/k be-
comes exp(iup);i2pupu@11sign(p)#/(kd)1O(k2). Corre-
spondingly, uPp

21u;exp(2pupukd) and so the series in Eq
~118! are exponentially convergent. Recasting the denom
tor of the terms in Eq.~118! as geometric series, we obtai
04660
l
.

-
f
,

a-

DSn5
2

d
F(

l 51

`

m l (
p52`

`

xp
21einup exp$ i l ~apsx1xpdy!%

1~21!n(
l 51

`

m2 l (
p52`

`

xp
21e2 inup

3exp$ i l ~2apsx1xpdy!%G , ~119!

and immediately, from the presence ofm l andm2 l , it follows
that the terms in the series of Eq.~119! represent contribu-
tions to the array lattice sums from grating layers displac
vertically from the central grating by6 ldy .

This heuristic derivation of the relationship between arr
and grating lattice sums has also been supplemented
rigorous analytic demonstration from first principles@34#.
The relationship is of considerable significance computati
ally as it increases the speed of evaluation of array lat
sums~116! by a factor of at least 10 over the original tec
nique @35,36#.

VII. CONCLUSIONS

This paper has presented a comprehensive discussio
the Bloch technique, which enables one to go from the s
tering properties of a grating to the modes that propagat
any array comprising a stack of gratings. The method is
curate, computationally robust as well as of enhanced e
ciency, in comparison with both our Rayleigh multipo
theory for arrays@20# and plane wave methods@2,3#.

Unlike plane wave techniques, the method is also w
suited to the analysis of arrays and lattices containing los
metallic components. In such cases, the eigenvalues are
plex numbers and problems to be addressed in future re
more to their visualization than calculation.

The analytic treatment of scattering matrices of fin
stacks has led to a fundamental new quantityR ` that is the
scattering matrix for a semi-infinite array and is deduc
directly from the modal eigenproblem. Indeed,R ` can be
used as a ‘‘black box’’ to encapsulate the properties o
substrate comprising an array of arbitrarily large thickne
as arises in the treatment of photonic crystal gratings@37#.

The technique is not limited to the connection betwe
gratings and arrays and, in future work, we will explore t
connection between scattering from a monolayer of sphe
and modes that propagate in lattices composed of s
monolayers. Again, the grating need not contain one s
terer per unit cell, and so we may investigate the modes
propagate in crystal structures of quite general form in t
way. The method has also elucidated the connection betw
monolayers and arrays constructed from them in the form
relationships between their lattice sums.
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APPENDIX: ENERGY FLOW AND GROUP VELOCITY

Here, we relate the group velocity and energy flux to d
rive the result

¹k0
v5

c2

v

EF

ED
, ~A1!

whereEF denotes the vector energy flux through the unit c
andED denotes the electric energy density per unit cell. T
derivation given here is forEi polarization. A similar treat-
ment yields the same result forH i polarization. We derive
one component of the group velocity by considering the lim
of an energy integral associated with two field problems, a
infer from this the general form of the result.

We begin by defining two field problems for fieldsu and
u8, respectively, satisfying Helmholtz equations

@¹21k2«~r !#u50, ~A2!

@¹21k82«~r !#u850, ~A3!

and Bloch conditions

u~r1me11ne2!5nmmnu~r !, ~A4!

u8~r1me11ne2!5nmm8nu8~r !, ~A5!

where n5exp(ik0•e1), m5exp(2ik0•e2), and m8
5exp(2ik08•e2), with k05(a0 ,b0) andk085(a0 ,b08).

An application of Green’s Theorem around a unit par
lelogram cellU, with sides defined by the vectorse1 ande2,
enables us to derive

E E
U

u¹2ū82ū8¹2u dA5S E
G1

dx2E
G2

dxD u
]ū8

]y
2ū8

]u

]y
.

~A6!
e

tt.

on

s.

s.
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In Eq. ~A6!, the contoursG6 are the upper and lower hori
zontal boundaries of the parallelogram cell~parallel to the
vectore1). Quasiperiodicity in the directione1 cancels con-
tributions to the line integral from the sides of the paralle
gram that are parallel toe2. Applying the Helmholtz equa-
tions ~A3! and the quasiperiodicity equations~A5! in Eq.
~A6! and taking limits ask8→k, b08→b0 in yields

lim
k8→k

k22k82

b02b08
5

2 idyE
G1

@u]ū/]y2ū]u/]y#dx

E E
U

«~r !uu~r !u2dA

. ~A7!

Following the treatment of@16#, the numerator of the
right-hand side of Eq. A7 may be shown to be

2idxEF,y52idxF (
pPVr

~ u f p
2u22u f p

1u2!22 Im (
pPV̄r

f p
2 f̄ p

1G ,

~A8!

whereEF,y is downward energy flux in they direction. Cor-
respondingly, the denominator of right-hand side of Eq.~A7!
is ED dxdy, whereED denotes the electric energy density p
unit cell. It then follows from Eq.~A7! that they component
of the group velocity is given by

]k

]b0
5

EF,y

kED
. ~A9!

The same arguments yield an analogous expression for tx
component of the group velocity, from which the result
Eq. ~A1! follows.
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